Company News

Going Solar: Solar Homes Sell for more

Solar Homes Sell for More

A new report published by Zillow found that homes with residential solar systems sell for 4.1% more than their non-solar counterparts.

A common if disingenuous argument against the adoption of residential solar is that not only can systems be expensive, but that expense is a lost cause because solar systems devalue homes and the homes around them. Directly contradicting this, Zillow has released a report stating that homes with solar panels sell for 4.1% more than their generation-naked counterparts.

The premium was calculated by comparing sale prices and listings from March 1, 2018 to February 28, 2019, controlling for bedrooms, bathrooms, square footage and location.

This 4.1% average equates to $9,274 on average nationally, though the monetary mark is much more regionally dependent. For example, Riverside, California’s price premium average is 2.7%, almost 1/3 lower than the national average, however that 2.7% represents $9,926, obviously higher than the average and reflective of higher property costs in California.

The mark that really stands out both as a percentage and a numerical value is New York City. Solar homes in the Big Apple represent a bigger differential national average at 5.4%, which, and it’s well known how expensive property is in the city, translates into $23,989 numerically.

The Zillow report outlines the reasoning for this sale premium is a mixture of investment and taste. On the investment front, some homeowners are willing to pay more for a house with a system, rather than buying a different house and then working out the logistics of installing a system and paying for the materials and installation, which in some places could be more than the pre-installed premium. In other cases, solar systems aren’t the only features that contribute to this premium, as other luxuries like heated floors factor in.

With these variables considered, some buyers just want the system purely to see relief on their electrical bills if they know that they’re high energy users or because they are environmentally conscious.

Source: PV USA

Starbucks launches solar energy test that will power 360 Texas stores

The coffee giant commits to reducing emissions with solar energy.

Starbucks continues its move toward solar energy with the
commitment to power 360 Texas-area Starbucks stores in the Houston, Dallas, Fort Worth, Plano and Arlington markets. In total, the Seattle-based coffee giant estimates that the eight farms will reduce their stores’ carbon emissions by approximately 101,000 tons annually.

“Starbucks and other forward-looking companies are carrying out their bold renewable energy targets, and Cypress Creek is proud to provide the innovative and tailored energy solutions needed to bring their vision to life,” Matthew McGovern, CEO of Cypress Creek Renewables said in a statement.

This is not the first major investment Starbucks has made in solar energy. In May 2017, Starbucks announced that 149,000 solar panels would be powering 600 stores in North Carolina, Delaware, Kentucky, Maryland, Virginia, West Virginia and Washington, D.C. The North Carolina project represented a new phase for Starbucks’ green energy investments, while this latest partnership in Texas is another chapter in the company’s reinvigorated commitment.

“Our long-standing commitment to renewable energy supports our greener retail initiative and demonstrates our aspiration to sustainable coffee, served sustainably,” Rebecca Zimmer, Starbucks director of global environmental impact, said in a statement. “Now, we are investing in new, renewable energy projects in our store communities, which we know is something our partners and customers can appreciate for their local economy and for the environment.”

In September 2018, Starbucks announced a“Starbucks Greener Stores” commitment to building and operating 10,000 “greener” Starbucks stores by the year 2025, an initiative expected to save the company upwards of $50 million in utilities costs over the next decade. Each of those Starbucks stores will focus on energy and water efficiency, invest in solar and wind power, reduce waste, and will be built and operated with sustainably sourced materials.

Source: Nations Restaurant News

Your Solar Guide: How many panels is needed for your project?

Transitioning to Solar

Investing and transitioning to solar can seem complex but Solar Chief is here to help. Our company prides itself on educating customers on everything solar. Solar Chief wants to ensure every project is successful in producing the amount of energy needed. Faults can occur when using an online app to calculator the number of panels needed because the app doesn’t calculate all the circumstances. Solar Chief offers FREE proposals and FREE site evaluations to provide an accurate estimate.

How many solar panels is needed for your project?
Depends on the amount of electricity used and location of the panels.

How to estimate your energy needs

Energy Efficiency of Home

Make energy-saving upgrades to maximize efficiency before adding solar. Completing a home energy audit can significantly lower your energy bill. The process is not costly and many adjustments can be done yourself. Local utility companies offer energy saving tips, discounts, and rebates. SCE&G offers free Home Energy Check-ups. Below are some examples of energy upgrades.

  • Inspect doors, windows, roof, and attic for leaks
  • Replace your old bulbs with high-efficiency bulbs (SCE&G Discounts)
  • Update to energy efficient appliances (SCE&G Appliances Recycling Rebate)
  • Install energy-saving smart thermostats (example: Nest)
  • Replace air filters

Assess Solar Potential and Limitation

The location of your project determines the solar potential of the solar array. PV systems use direct and indirect sunlight but the efficiency can be impacted. Look at your areas yearly sun exposure.
The limitations of your solar array can be created by shading (trees or buildings), roof conditions (age, size, material), and HOA (homeowner association) restrictions. Ask Solar Chief to provide recommendations to reach a peak efficiency of your system.

Assess Options of Solar

The solar option chosen could affect the number of panels in your system. Determining your use for solar energy will help configure the amount of electricity your system needs to produce. Price and ownership play a role in planning your array. Some panels can produce more electricity than others. Do you want a rooftop or ground-mounted solar system? Do you want to be connected to the grid?

Estimate Projects Solar Electricity Needs

Estimating the amount of electricity a system needs to produce is the last step. Addressing the efficiency of your home will lower the amount of energy needed to be produced. Solar Chief wants to create the most accurate energy estimation. Analyzing your power bill can determine the number of kilowatts per hour used per month. Then we will determine what your system would need to be in kW in order to meet your kWh needs.

Factors to Consider

Importance of knowing peak usage. Some homes use more energy in summer or winter and you want to have a system prepared for peak loads.

Consider any planned changes. If you will be purchasing an electric vehicle or are planning a home addition, your electricity needs may increase.

Importance of your home’s energy efficiency. If you are continuing to make significant changes to improve your home’s energy efficiency, you may need less electricity than you used in the past.

Net Metering. If you want to sell back power to the electric company, then you need to produce more power than you consume.

There is a regulatory cap on the system KW size permitted on top of your roof.

There are so many factors determining the size of your system. Contact Solar Chief to find out more. Thanks for reading!

Source: Energy.gov

Going Solar: Grid Connection

What is Grid Connection?

There are various factors to consider when going solar. The type of solar setup will determine your electricity connection to the local utility’s electricity grid. The type of system selected is decided by your needs.

Grid Connected Solar System is connected to the local utility’s electricity grid. Excess electricity generated can be exported back to the grid. Supplemental electricity can be transmitted from the grid to meet energy demands.

Grid Connected Solar and Battery System collect solar power from your panels to use and store in your battery for backup use. The system connects to the grid, which brings the advantage of net metering. Net metering is a solar incentive that allows you to store energy in the electric grid. The excess power your solar panels generate is sent to the grid, which is exchanged for the option of grid electricity if your system is under-producing like during nighttime.

Off the Grid Solar System is entirely self-sufficient and has no way to use the grid to supply the household with electricity. Off-grid systems are not joined to any utility power lines. Batteries store the unused solar energy for nighttime use.

Sources: Energy Sage

Innovations in Solar: Solar Powered Stop Signs

Solar Powered ‘Smart Stop Sign’ Developed To Curb Rural Traffic Crashes

A low-cost, self-powered, intersection detection and warning system to alert rural motorists about potential dangers has the potential to improve driver safety and save lives, according to engineers at The University of Texas at San Antonio (UTSA) who developed and are testing the new thermal technology.

The warning system, which was announced earlier this month, was designed to detect vehicles and improve the visibility of stop signs. It runs on solar power and is installed on stop signs. It is an important safety innovation, the engineers noted, as according to the U.S. Department of Transportation, more than half of the road crash deaths nationally occur on rural road. And without access to a power supply, rural roads are more likely than others to lack signals and active traffic signage.

“Stop signs on rural roads are difficult to notice, and this leads to dangerous accidents,” Ayetullah Biten, a doctoral candidate in the UTSA Department of Electrical and Computer Engineering, said in a statement.

The “smart stop sign” uses a multi-pixel passive infrared sensor that detects a vehicle as it approaches an intersection. When the vehicle is within range, a signal beacon triggers the stop sign’s flashing system.

Compared to current traffic sensing technologies in urban areas, the new system consumes less power, is much less expensive to produce, and offers better accuracy, the engineers said. (The “smart” system, they said, has a 90 % accuracy rate for vehicle detection.)

“Our off-roadway system can be installed on urban or rural roads completely independent of the utility power grid, because it is powered by small solar panels and functions in all weather conditions,” Sara Ahmed, a professor in the UTSA College of Engineering and one the system’s creators, said in a statement.

The project team expects to adapt the “smart stop sign” technology for other uses, including pedestrian detection, vehicle-to-infrastructure communication, and exportation to countries with limited access to power grids.

The potential international reach has wide-ranging implications, Natalie Draisin, the North American director for the FIA Foundation, a nonprofit based in London, told Forbes. 

“Low-cost innovations are important to improve road safety, particularly as 90% of road traffic fatalities occur in low- and middle- income countries.” 

But it is also important to remain focused on existing solutions, like monitoring speed.

“Around the world, we know that prominent signs encourage safer driving, but they must be coupled with proven infrastructure measures, and consistent enforcement to end the 1.35 million roads deaths each year.”

Source: Forbes

Solar Myths: Clouds Impact on Solar

Do clouds impact solar production?

Solar panels operate on cloudy days, but the productivity will be lower. Clouds blocking the sun limit the amount of direct sunlight the solar panels can absorb. The decrease in sunlight absorbed by solar panels results in less electricity produced. Overall a few cloudy days won’t ruin your dream of a successful solar project. The determining factor of a prosperous system is the amount of sun your area receives over an entire year.

“Photovoltaic panels can use direct or indirect sunlight to generate power, though they are most effective in direct sunlight. Solar panels will still work even when the light is reflected or partially blocked by clouds. The rain actually helps to keep your panels operating efficiently by washing away any dust or dirt. ”


SEIA

Solar Chief is a proud member of the Solar Energy Industries Association(SEIA).

5 Interesting Facts About Solar Energy

1. Solar energy can provide power 24 hours a day, 7 days a week

Technological advances in solar storage space has made 24/7 storage possible.

2. Homeowners in the U.S. have achieved break even point with solar in as short as 3 years

The cost of solar has plummeted while the cost of grid electricity has continued to gradually rise, and the concept of the solar “break-even point” with solar has become more and more attractive. Some homeowners are seeing break-even points as low as three to four years in states where utility prices are high.

3. Solar energy is a completely free source of energy

Solar is found in abundance. Though the sun is 90 million miles from the earth, it takes less than 10 minutes for light to travel from that much of distance.

4. First silicon cell was built in 1954

The first silicon solar cell, the precursor of all solar-powered devices, was built by Bell Laboratories in 1954. On the first page of its April 26, 1954 issueThe New York Times proclaimed the milestone, “the beginning of a new era, leading eventually to the realization of one of mankind’s most cherished dreams — the harnessing of the almost limitless energy of the sun for the uses of civilization.”

5. Solar Power reduces electricity bills

Solar power can significantly reduce the electricity bills. Moreover, there are many tax incentives and rebate programs designed to spur the use of solar, and save home owners money at the same time.

Innovations in Solar: Could Solar Power Stations in Space Supply the World with Limitless Energy?

Experts are saying that a solar power station in space would provide all of the energy needed around the world. While on the surface of the Earth, society still struggles to adopt solar energy solutions, many scientists maintain that giant, space-based solar farms could provide an environmentally-friendly answer to the world’s energy crisis.

“Above the Earth, there’s no day and night cycle and no clouds or weather or anything else that might obstruct the sun’s ray, so a constant power source is available,” said Ali Hajimiri, professor of electrical engineering at the California Institute of Technology and co-director of the university’s Space Solar Power Project.

Global energy demands are only going to grow, says Hajimiri. The global population is expected to reach a staggering 9.6 billion by 2050, according to a United Nations report, so methods of generating large quantities of clean energy must be found. A space-based solar power system could provide energy to everyone, even in places that don’t receive sunlight all year round, like northern Europe and Russia.

One of the biggest issues to overcome is that of getting an array of solar panels large enough to make the project viable into orbit.
However, with SpaceX and Blue Origin slowly driving the cost of orbital delivery down, suddenly the concept seems a little closer to reality.

This completed array would orbit about 22,000 miles above the Earth and “beam” the energy back down to the surface. The photovoltaic array converts the sunlight into electricity, which in turn is converted into RF electrical power (microwaves) that are beamed wirelessly to ground-based receivers. These would take the form of giant wire nets measuring up to four miles across that could be installed across deserts or farmland or even over lakes.

A solar facility like this could generate a constant flow of 2,000 gigawatts of power, Mankins estimates, compared to the largest solar farm that exists today in Aswan, southern Egypt, that only generates in the region of 1.8 gigawatts.

Source Forbes

Going Solar: Paying for Solar System

Going solar is a financial no brainer. What are the ways to purchase solar system?

Homeowners can pay for solar with cash, credit cards or financing. There are also solar lease options available, some even include no-money-down programs. However, you wouldn’t qualify for rebates or tax breaks if you lease the solar panels; those incentives go to the owner of the system.

For homeowners who are eligible to refinance into a lower, fixed-rate mortgage, a cash-out refinance might be a low-cost way to pay for a solar system, provided you can afford the monthly mortgage payments.

Finally, if you decide to make the clean-energy switch, be sure to look out for any federal, state and county-wide incentive programs, which could save you thousands of dollars. Politics can be unpredictable so take advantage of the tax credits available now. The federal tax credit of 30% will only be valid till 12/31/2019. After 12/31/2019 the federal tax credit will decrease to 26%. Then on 12/31/2020, the tax credit will be reduced to 22%. Now is the time to act in order to receive the tax credit advantage.

Before going solar contact your accountant to fully understand the tax credits impact on your financial situation.

Federal Solar Tax Credit*

The Federal Government offers a Tax rebate of 30% of your total solar system cost. There is no set cap to this rebate. It must be used on the same tax year that the system was installed.

State Tax Credit*

South Carolina has a state tax credit of 25% of the total cost of your solar system. This is capped at $3,500 or 50% of your tax liabilities. These tax credits can be carried out for up to 10 years.

Contact Solar Chief for free site evaluation and quote! We would be happy to discuss all of your financial options.

Solar Radiation Basics

Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the available solar resource.

BASIC PRINCIPLES

Every location on Earth receives sunlight at least part of the year. The amount of solar radiation that reaches any one spot on the Earth’s surface varies according to:

  • Geographic location
  • Time of day
  • Season
  • Local landscape
  • Local weather.

Because the Earth is round, the sun strikes the surface at different angles, ranging from 0° (just above the horizon) to 90° (directly overhead). When the sun’s rays are vertical, the Earth’s surface gets all the energy possible. The more slanted the sun’s rays are, the longer they travel through the atmosphere, becoming more scattered and diffuse. Because the Earth is round, the frigid polar regions never get a high sun, and because of the tilted axis of rotation, these areas receive no sun at all during part of the year.

The Earth revolves around the sun in an elliptical orbit and is closer to the sun during part of the year. When the sun is nearer the Earth, the Earth’s surface receives a little more solar energy. The Earth is nearer the sun when it is summer in the southern hemisphere and winter in the northern hemisphere. However, the presence of vast oceans moderates the hotter summers and colder winters one would expect to see in the southern hemisphere as a result of this difference.

The 23.5° tilt in the Earth’s axis of rotation is a more significant factor in determining the amount of sunlight striking the Earth at a particular location. Tilting results in longer days in the northern hemisphere from the spring (vernal) equinox to the fall (autumnal) equinox and longer days in the southern hemisphere during the other 6 months. Days and nights are both exactly 12 hours long on the equinoxes, which occur each year on or around March 23 and September 22.

Countries such as the United States, which lie in the middle latitudes, receive more solar energy in the summer not only because days are longer, but also because the sun is nearly overhead. The sun’s rays are far more slanted during the shorter days of the winter months. Cities such as Denver, Colorado, (near 40° latitude) receive nearly three times more solar energy in June than they do in December.

The rotation of the Earth is also responsible for hourly variations in sunlight. In the early morning and late afternoon, the sun is low in the sky. Its rays travel further through the atmosphere than at noon, when the sun is at its highest point. On a clear day, the greatest amount of solar energy reaches a solar collector around solar noon.

DIFFUSE AND DIRECT SOLAR RADIATION

As sunlight passes through the atmosphere, some of it is absorbed, scattered, and reflected by:

  • Air molecules
  • Water vapor
  • Clouds
  • Dust
  • Pollutants
  • Forest fires
  • Volcanoes.

This is called diffuse solar radiation. The solar radiation that reaches the Earth’s surface without being diffused is called direct beam solar radiation. The sum of the diffuse and direct solar radiation is called global solar radiation. Atmospheric conditions can reduce direct beam radiation by 10% on clear, dry days and by 100% during thick, cloudy days.

MEASUREMENT

Scientists measure the amount of sunlight falling on specific locations at different times of the year. They then estimate the amount of sunlight falling on regions at the same latitude with similar climates. Measurements of solar energy are typically expressed as total radiation on a horizontal surface,or as total radiation on a surface tracking the sun.

Radiation data for solar electric (photovoltaic) systems are often represented as kilowatt-hours per square meter (kWh/m2). Direct estimates of solar energy may also be expressed as watts per square meter (W/m2).

Radiation data for solar water heating and space heating systems are usually represented in British thermal units per square foot (Btu/ft2).

DISTRIBUTION

The solar resource across the United States is ample for photovoltaic (PV) systems because they use both direct and scattered sunlight. Other technologies may be more limited. However, the amount of power generated by any solar technology at a particular site depends on how much of the sun’s energy reaches it. Thus, solar technologies function most efficiently in the southwestern United States, which receives the greatest amount of solar energy.

Article from Energy.gov